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Abstract

A method is described for identification and classification of proteins encoded in large DNA
sequences. Previously, an automated system was introduced for the general detection of amino acid
sequence motifs within diverse protein families. The system generated a database consisting of
aligned sequence segments (blocks) that correspond to the most highly conserved regions of
proteins. This database of blocks can be searched using protein queries for sensitive detection of
homology based on the detection of both local and global similarities. Here we show that this
database searching approach can also be used to detect distant relatives encoded in very large DNA
sequences. The approach is illustrated by the detection of known and new relationships in the 315
kilobase (kb) sequence of yeast chromosome III.

1: Introduction

Automation and new approaches applied to DNA sequence acquisition methodology have led to
an increase in the size and number of large sequencing projects in recent years, a trend that is likely
to continue. The motivation for these large-scale sequencing projects is typically to discover and
analyze genes, a process that involves detection of protein homology, often the only or the most
important clue to the function of a gene. The likelihood that useful homology will be detected for
a new sequence increases as more and more genes of known function are sequenced, and their
sequences placed in public databanks. However, this same increase in size of the databanks leads
to higher background in searches, making distant relationships more difficult to detect with
confidence. When this problem is encountered in large-scale projects, it is especially challenging
because contextual information about any particular segment of DNA is lacking. This is in contrast
to the situation for an individual investigator interested in a single gene, who usually has biological
insights that allow informed judgments to be made. For this reason, simplified automated
approaches to sequence analysis are especially important for the interpretation of large-scale
sequence data [1], [2], [3], [4], [5].

Here we describe one such automated approach, and apply it to the largest available contiguous
sequence in the current databanks,Saccharomyces cerevisiae chromosome III. We present results
comparable to those obtained using labor-intensive manual approaches carried out by recognized
experts in sequence analysis [6], [7], [8] using standard similarity searching tools  [9], [10], [11],
[12], and even show the detection of homologies that were not reported by them.

2: Methods

2.1: A database of blocks
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Fig. 1. Outline of the PROTOMAT system [2] applied to the PROSITE catalog keyed to the
SWISS-PROT databank. The different modules are indicated, resulting in a set of blocks
representing families in PROSITE, calibrated for searching using PATMAT.

Blocks consist of multiply aligned sequence segments without gaps. In previous work, we
introduced the PROTOMAT system for making blocks from groups of related proteins [2]. The
system consists of modules that can be executed singly or in combination, either manually using
user-specified parameters or automatically using parameters determined by the system (Fig. 1).
PROTOMAT is applied to successive groups, resulting in a database of blocks. For the blocks
databases used in the current and previous studies (BLOCKS), groups consist of collections of
proteins that share sequence similarity (and usually function) that are listed in the PROSITE
catalog  [13]. An entry in the PROSITE catalog contains the SWISS-PROT [14] IDs for members
of a documented protein group.

First, the sequence extraction module of PROTOMAT (PROTOMOT) reads a PROSITE entry
from the PROSITE.DAT file and finds the individual full-length sequences in the SWISS-PROT
databank. Using these sequences, PROTOMOT then executes a modified version of Smith's
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MOTIF program for finding motif alignments in an automatic mode, where all parameters are
determined by the program [15]. MOTIF searches for any set of 3 amino acids separated by 2 fixed
distances occurring in a large fraction of the protein sequences in the group, where all 20 amino
acids and all possible distances up to 17 are considered. Each resulting motif forms the basis for
an alignment, against which each of the remaining sequences is aligned. These block alignments
are then refined by the MOTOMAT module which merges motifs if they are aligned identically in
all of the sequences and extends alignments out in both directions until similarity declines.
Segments are then clustered such that within a cluster, each segment is≥80% identical to at least
one other segment.

MOTOMAT then uses graph theory techniques to assemble "paths" of blocks, reporting a "best
path". All blocks in a path must be in the same order without overlapping for all of the sequences
represented, which might not include all sequences in the PROSITE group. Each block is written
to a separate file in a format that resembles a PROSITE entry. For the sequences represented, the
minimum and maximum distances from the preceding block are included in each block file.

Calibration of individual blocks and their concatenation into a single file is performed by the
MATODAT module. First, the PATMAT searching program uses each block as a query of the
SWISS-PROT database by converting the block to a position-specific scoring matrix [16] and
scoring all possible alignments of the block and all sequences in the database [17]. MATODAT
analyzes the rank-ordered search results to separate the scores of (true positive) sequences that
were used to construct the block from the scores of other sequences (considered true negatives). A
"lower calibration score" corresponding to the 99.5th percentile of true negative scores is used to
normalize each block. The median of true positive scores provides an "upper calibration score";
dividing this by the lower calibration score and multiplying by 1000 provides a measure that is
referred to as the "strength" of the block.

2.2: Searching a database of blocks

The Blocks Searcher system [18] consists of the successive execution of two programs. First,
PATMAT converts each block to a position-specific scoring matrix and scores all possible
alignments of the (translated) DNA or protein query sequence and the Blocks Database [17]. This
procedure is the reverse of a sequence database search used for block calibration. For each position
in the query sequence scores are assigned on a scale of 0-100%, reflecting the frequency of the
residue at that position in the block, divided by the expected occurrence of the residue in proteins
in general. For protein queries, amino acid frequencies in SWISS-PROT are used for weighting,
whereas for translated DNA queries, which consist primarily of non-coding and out-of-frame
sequence, codon frequencies are used. Stop codons are given zero score. The sum of scores for all
aligned positions is divided by the lower calibration score and multiplied by 1000 to yield a
normalized "PATMAT score". BLOCKSORT analyses the results of a PATMAT search by
examining alignments of the query with multiple blocks representing a group.

A "hit" reported by the Blocks Searcher consists of at least one block with a PATMAT score
>1000 from a protein group represented in the Blocks Database. The highest ranking block in a hit
is called the "anchor" block and any other blocks in the hit are called "supporting" blocks. A
supporting block must align with the query sequence in the correct order and within reasonable
distance of the anchor block and higher ranking supporting blocks, as previously described [18].

The number of block alignments saved and reported by the Blocks Searcher depends on the
length of the query sequence. The average protein is about 340 amino acids (aa), so that on the
average there could be one protein-coding gene per 1000 bases (1kb) in gene-dense sequence.
Accordingly, the Blocks Searcher reports up to as many hits as there are kb in the query sequence,
with a minimum of 10. Since each group in the Blocks Database is represented by an average of 4
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blocks, the Blocks Searcher saves 4 block alignments for each hit it reports. For a query the size of
yeast chromosome III, with 315,357 bp, 4 x 316 = 1264 block alignments are saved and up to 316
hits are reported. For tests of shuffled sequence queries reported in this study, 5000 block
alignments were saved by PATMAT and up to 1000 hits were reported by BLOCKSORT, allowing
a more thorough examination of potential false positive alignments and hits.

A measure of local similarity is provided by a percentile score, which is obtained by comparing
the PATMAT score of each anchor block to the distribution of PATMAT scores from 7082
searches of the Blocks Database using shuffled SWISS-PROT sequences [18]. For single block
hits, this is the only measure of sequence similarity provided. However, for multiple block hits, an
expectant value, E, is used to estimate the degree of global similarity. For example, a value of
E=10-3 is expected to occur by chance once for every 1000 searches of the database using a protein
query of average length.

The expectant value E is computed as the product of probabilities for each supporting block, and
each supporting block probability consists of the product of two parts. The first part estimates the
probability that a supporting block achieves its rank among all the block alignments done for the
search using a simple sampling without replacement model. The second part estimates the
probability that a supporting block will lie within a reasonable distance of the anchor block on the
query sequence using statistics from the sequences in the blocks for the protein group.

Hits from searches of shuffled protein sequences against the Blocks Database were used in our
previous study to evaluate the expectant value for assessing global similarity for multiple block hits
[18]. We used 7082 shuffled proteins present in SWISS-PROT 24, maintaining the average size
and composition of proteins in general. For the resulting 43,783 hits, we found that the observed
frequency of expectant values was very close to the magnitude of the expectant values.

An anchor block score and an expectant value for supporting blocks together provide independent
evidence that can be used to evaluate a hit (Table 1), because the anchor block score is not used to
calculate E. For example, a hit with anchor block score of 1312 (≥ the 98th percentile) and
expectant value of 10-3 is expected to occur at least once by chance in 7000 searches using an
average length protein, but is not expected to occur in 1000 searches.

2.3: Implementation

The Blocks Searcher has been implemented as an electronic mail server  [19]. Detailed
instructions with illustrative examples can be obtained by sending the message "help" in the subject
line to blocks@howard.fhcrc.org. The Blocks Database is updated semi-annually following each
significant update of Prosite. The current Blocks Database (BLOCKS v. 6.0) contains 2,302
calibrated blocks representing 619 groups. The PATMAT and BLOCKSORT programs are written
in standard C for UNIX workstations and are available by anonymous ftp from the repository of
the National Center for Biotechnology Information, ncbi.nlm.nih.gov, in the blocks subdirectory.

Table 1. Occurrence of hits for 7082 shuffled protein queries

log(E) 1/100 searches1/1000 searches1/7000 searches
-5 NA NA 1040 (10.81)
-4 NA 1125 (55.72) 1307 (98.51)
-3 1054 (16.50) 1179 (80.24) 1312 (98.66)
-2 1173 (65.20) 1257 (95.78) 1422 (99.82)
-1 1203 (88.11) 1337 (99.10) 1403 (99.71)
 0 1325 (98.89) 1480 (99.91) 1617 (100.00)

Values shown are the highest (1/7000 searches), 7th highest (1/1000 searches) and 70th highest (1 /
100 searches) PATMAT anchor block scores for hits with each value of log(E). The associated
percentile value of all anchor block scores is in parentheses. NA: no hits were counted.
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Further information can be obtained by sending a request to henikoff@howard.fhcrc.org.

3: Results

3.1: Extension of the Blocks Database searching system to large DNA sequences

In our previous study, we described the Blocks Searcher system for detecting both local and
global homologies within protein sequences [18]. Here we are interested in homologies within very
large DNA sequences that might contain multiple protein-coding genes. DNA queries are
translated in all 6 frames and each translation is searched against the Blocks Database. Multiple
block hits must be on the same strand, but not necessarily in the same frame. Evaluation is a
problem because the Blocks Searcher presents results in terms of the expectation of a hit occurring
by chance in the context of a single protein, not of a sequence that might encode hundreds of
proteins. For example, the size of a protein equivalent to the 6-frame translation of yeast
chromosome III is about 1850 times larger than a typical protein.  This problem is illustrated in Fig.
2.

Fig. 2. Illustration of the conceptual problem addressed in this paper. Search results are
understandable when interpreted in terms of what is found using protein query sequences of
typical size (thick line). So, an anchor block (solid box) achieves a percentile score and
supporting blocks (open boxes) achieve E-values based on rank and allowable distance
between blocks (2-headed arrows) that are stated in terms of how frequently scores this high
(or low) occur by chance in a typical search. But using a large DNA sequence translated in
all 6 frames (arrows below) as query presents a problem, because there might be hundreds
of proteins embedded within it, and the chance probability of obtaining any given score by
chance is greatly increased in such a search. Still, searching in this way might be
advantageous because it provides a single list of results, and because it makes no assumptions
concerning ORFs, some of which might even be frameshifted (as illustrated at lower left). We
therefore wish to evaluate these results as for single protein queries. This should be allowable
if it can be shown that the E-values reported are realistic.

To test whether Blocks Searcher results are valid for large DNA queries, we shuffledS. cerevisiae
chromosome III to provide large true negative queries (315,357 base pairs) for searching the
Blocks Database. Shuffling was performed by randomly permuting individual bases, maintaining

Protein query

Large DNA query
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the overall base composition of the starting sequence. The gross alterations in coding regions that
result from such shuffling should have only a slight effect on the analysis, because even for
unshuffled sequences, 6-frame translation leads to about an order of magnitude more non-coding
than coding sequence. Seventy different shuffles were performed, providing queries of composite
length equivalent to about 130,000 different proteins of average size (70 shuffles x 315,357 bases
÷ 3 bases per aa x 6 frames÷ 340 aa per protein = 129,853). This means that our searches involved
129,853÷ 7082 = 18 times the number of comparisons as in our previous experiments.

The results of the 70 searches using large shuffled DNA queries are compared with those using
7082 shuffled protein queries in Table 2. For the protein queries, an average of 340 amino acids x
2302 blocks = 782,680 block alignments were compared by PATMAT, and the top 400 (0.05%)
were saved for analysis by BLOCKSORT, which found an average of about 6 hits per search. For
the DNA queries, 315,357 bases x 2 strands x 2302 blocks = 1,451,903,628 block alignments were
compared by PATMAT, and the top 5000 (0.0003%) were saved for analysis. BLOCKSORT was
limited to reporting a maximum of 1000 hits, and found 1000 for every search. The minimum
PATMAT score for an anchor block was 1021, well above 1001, the minimum anchor block score
for a hit. This means that not enough PATMAT alignments and BLOCKSORT hits were saved to
capture all possible hits, as was done for the protein queries, a reflection of the 1850-fold larger
number of comparisons made when doing 6-frame translation searches of such a large sequence.
In order to estimate the observed probability of the expectant (E) values for the DNA queries, we
first estimated the total number of possible hits (2 strands x 619 families x 70 searches = 86,660
possible hits). The Blocks Searcher reported 70,000, or 81%, of these possible hits. Therefore,
there should be nearly as many expectant values reported for the true negatives in the DNA
searches as in the protein searches. Table 2 shows that this is the case for log(E) ?< -2, where the
observed frequencies of E for the 70 DNA queries are similar to those for the 7082 protein queries.

There were very few observed E-values with log(E) = -2 and none with log(E) = -1 for the DNA
queries. This is a consequence of the DNA query length. The probability for each supporting block
in a hit includes a distance component, which is the ratio of a function of the observed range of
distances between the supporting block and anchor block among sequences in the Blocks
Databases and the query sequence length. For the DNA query, this ratio averages 3 x 126 / 315,357
= 1.2x10-3 (126 is the average value of the distance function in the Blocks Database in amino acid
units). For log(E) to be -2, the distance function would have to be over 1000, which occurs rarely
in the Blocks Database, and for log(E) to be -1 the distance function would have to be over 10,000,
which never occurs.

So when applied to long DNA sequences the Blocks Searcher under-reports the less significant
multiple block hits due to the high background levels, whereas it reports the more significant hits

Table 2. Relationship between expectant value (E) and observed hit frequency

Expectant value interval Observed frequency and probability of hits within E interval
a) 7082 Shuffled Protein Queriesb) 70 Shuffled DNA Queries
Frequency Observed P Frequency Observed P

              E≤3.5 x 10-7 0 0 1 1.2 x 10-5

3.5 x 10-7< E ≤3.5 x 10-6 0 0 0 0
3.5 x 10-6< E ≤3.5 x 10-5 1 2.3 x 10-5 1 1.2 x 10-5

3.5 x 10-5< E ≤3.5 x 10-4 15 3.4 x 10-4 26 3.0 x 10-4

3.5 x 10-4< E ≤3.5 x 10-3 124 2.8 x 10-3 259 3.0 x 10-3

3.5 x 10-3< E ≤3.5 x 10-2 625 1.4 x 10-2 60 6.9 x 10-4

3.5 x 10-2< E ≤3.5 x 10-1 3000 6.9 x 10-2 0 0
3.5 x 10-1< E 40018 9.1 x 10-1 86313 0.996
Total hits 43783 86600
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with realistic expectant values, similar to those observed for protein queries. We can therefore use
Table 1 to evaluate searches of the Blocks Database with long DNA queries.

3.2: Detection of homologs to yeast chromosome III ORFs

The longest available sequence to date is that of yeast chromosome III, on which 182 separate
open reading frames (ORFs) have been identified [6]. Of these, 37 had been previously determined.
For 30 other ORFs, significant similarities to known genes were detected based on FASTA scores
of ≥200 when each was searched against sequence databanks. In a subsequent study another group
used "a combination of low-stringency sequence database searches, various ways of assessing
significance, multiple sequence alignment, pattern searches and incorporation of prior knowledge
about protein and domain families" to search individual ORFs for additional relationships [7],  [8].
This resulted in detection of 17 more relationships not reported in the first study.

For our test the entire 315,357 base pair (bp) sequence was used as query, with translation of all
6 reading frames. So that these results would be comparable to those from the earlier studies, a
contemporary version of the Blocks Database (BLOCKS v. 4.1) was searched. The rank-ordered
list of hits reported by BLOCKSORT is shown in Table 3a. The top 21 hits identified alignments
that were previously known or first reported in the original study. Among these were hits involving
multiple blocks for which expectant values are reported, as well as very high-scoring single block
hits. Hit #22 was for the (cyclophilin-type) peptidyl-prolyl cis-trans isomerases, aligning with ORF
R69w, an essential gene (E=9x10-7 for 2 of 2 blocks). Truncation of R69w within the region that
aligns with the second of two blocks suggests a possible sequencing error. Hit #25 was a spurious
single block hit. Hit #26 was for the DNA polymerase X proteins, which aligned with segments
from ORF R14c (E=9x10-7 for 3 of 5 blocks). Hit #29 was for the prokaryotic carbohydrate kinases,
which aligned with a segment of ORF R36w (E=1x10-5 for 2 of 4 blocks). Hit #30 was for a single
block representing fungal regulatory proteins with a Zn(2)-Cys(6) cluster, which aligned with a
segment of ORF R106w. Like several members of this group such as ARG2, GAL4, and LEU3
from S. cerevisiae, R106w is 800-900 aa in length, with the block alignment falling within the first
50 residues. Hit #33 was for the sugar transport proteins, which aligned with ORF R98c (E=7x10-

4 for 2 of 4 blocks), and hit #42 was for the zinc-containing alcohol dehydrogenases, which aligned
with ORF R102c (E=7x10-4 for 2 of 4 blocks, A) The top 30 hits are shown as well as all multiple
block hits among the top 316. Homologies not reported in studies by Bork and co-workers [7], [8]
are indicated as new*. For hits 7 and 12, no E was reported because a higher scoring hit was
mapped on the same strand. Examples in which Internal repeats were detected are indicated (†).
Hits 21 and 34 were not detected in the search of BLOCKS v. 6.0. For hit 30, the undetected block
was weak (Strength<1100). B) G1-3T telomeric repeat translated into Cys-, Gly-rich repeat is
similar to an integrin repeat (#). Fig. 3 a). ORF R102c was one of the 7082 test queries in our
previous study [18], (E=1.4x10-6 for 3 of 4 blocks there). The failure to detect the third block in the
present study is due to truncation of the results list to the top scoring 5000 alignments.

Five of the six hits (Table 3a) not reported in the original study were found in the second more
detailed examination [7], [8]. However, the identification of R102c as a member of the zinc-
containing alcohol dehydrogenases was not reported in either study. Among the top 316 hits only
a single false positive multiple block hit was reported, the 61st best hit consisting of only 2 of 15
blocks in the best path (E=7x10-3).

The 34 non-spurious hits listed in Table 3a represent about 40% of the 84 total homologies
reported in previous studies of yeast chromosome III sequences; this is comparable to the fraction
of SWISS-PROT sequences represented in the Blocks Database. Therefore, the detection of only
a subset of known homologs in this search is accounted for by the fact that most proteins in
sequence databases have no known homologs and so have not been placed into PROSITE groups.
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We also used the same query to search the current Blocks Database, BLOCKS v. 6.0, which is
one year newer and contains 23% more groups than BLOCKS v. 4.1 used in the above analysis
(619 groups vs. 504 groups). This search classified an additional ten ORFs, missing two ORFs

A) Hit 42: Zinc alcohol dehydrogenases (Detection of distant relationship)

Block    Rank Frame Score Strength Location
BL00059A   78   -3   1302 2708     3720-3764
BL00059D  778   -3   1122 2214     3890-3947

1302=98.30th percentile of anchor block scores for shuffled queries
E=0.00074 for BL00059D in support of BL00059A
                         |-----  124 residues----|
   BL00059 AAAAAAAAA:.BBBBBB:.......CCCCCCCCCCCC:..........DDDDDDDDDDDD
 YSCCHRIII AAAAAAAAA:::::::::::::::::::::::::DDDDDDDDDDDD

BL00059A    <->A (1,35):3719
ADHX$HORSE 8     AAVAWEAGKPVSIEEVEVAPPKAHEVRIKIIATAVCHTDAYTLSG
                  ||  | || |  | |         | ||  | |   ||
YSCCHRIII  3720  KAVVIEdGKaVVkEgVPiPELeEGfVLIKtLAVAgnpTDwahIDy

BL00059D   A<->D (108,194):125
ADH$ARATH  198   AIFGLGAVGLGAAEGARIAGASRIIGVDFNSKRFDQAKEFGVTECVNPKDHDKPIQQV
                    |  |||      |        | |    |     || |        | |   |
YSCCHRIII  3890  LwgGAtAVGqSLIQlAnKLnGftkIIVvASrKhEKLlKEYGADqlfDyhDiDvveQIk

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B) Hit 23: Eukaryotic RNA-binding region (Repeated domains)

Block    Rank Frame Score Strength Location
BL00030A   50   -2   1530 1513     70920-70940
BL00030A  109   -2   1259 1513     71017-71037
BL00030A 1092   -2   1104 1513     71147-71167
BL00030B   80   -2   1292 1668     71054-71072
BL00030B  196   -2   1207 1668     70956-70974

1530=99.97th percentile of anchor block scores for shuffled queries
E=8.5e-05 for BL00030B in support of BL00030A

BL00030A    <->A (8,571):70919
SSB1$YEAST 37    TIFIGNVAHECTEDDLKQLFV
                  ||  |    ||  ||| ||
YSCCHRIII  70920 SIFVRNLtFDCTpEDLKELFG

BL00030B   A<->B (3,295):113
ROA1$HUMAN 51    RSRGFGFVTYATVEEVDAA
                  ||||| | | |  |   |
YSCCHRIII  71054 fSRGFGsViYpTEDEMIrA

Fig. 3. Block Searcher output for examples discussed in the text. For each alignment, the rank,
frame, PATMAT score, strength and location are reported, where location refers to the aligned
segment in the query. Alignments with scores that rank among the top 1264 in the search are
mapped in panel A for the blocks in the hit. Minimum (:) and maximum (.) distances between blocks
in the database are indicated. In the alignments, precise distances between detected blocks is
shown as (min, max): for the database sequences followed by the distance in the query sequence.
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detected previously (Table 3b), apparently because of changes to the blocks that occurred with the
addition of new members to the group. The net increase of 8 ORFs detected (24%) is comparable
to the increase in the number of families represented in BLOCKS after a one-year interval. While
seven of the classifications represent findings listed by Oliveret al. [6], and one was missed by
them but was reported in the subsequent studies by Bork and co-workers [7], [8], two others were
not detected by either group. One is a new member of the beta-transducin family (R57c), and the
other is an EGF-related protein. In both cases, identification was confirmed by the detection of an
adjacent repeated domain (see below). ORF R57c was one of the 7082 queries used in our earlier
study [18], detecting the two beta-transducin family blocks with E=3x10-5, similar to the level of
detection in the present study (1x10-4, Table 3b).

One interesting false positive detected in this search is the translated sequence of telomeric G1-3T
DNA repeats aligned with blocks representing an integrin beta chain repeat unit. This is accounted
for by the fact that the integrin blocks consist largely of cysteine and glycine residues which can
be encoded by TGT and GGN respectively. Like a similar example reported previously for a region
of unusual base composition [17], the basis for this block-specific artifact is readily identified by
examination of the BLOCKSORT output. Alternatively, such artifacts might be reduced or
eliminated by using sequence filters to remove regions of low informational complexity from
sequence queries [20], [21].

In five cases, we detected characteristic repeated motifs, seen as multiple alignments of a single
block within the same encoded protein. An example is Hit #23, the eukaryotic RNA-binding
domain typically found 2-3 times in proteins of this family (Fig. 3b). In the case of the EGF domain
reported in the search of BLOCKS 6.0 for ORF R11c, the detection of a very high-scoring repeat
(at the 98th percentile of anchor block scores) beginning 38 aa upstream is strong confirmation of
what otherwise would have been a "twilight zone" hit (at the 99.1 percentile for a single block).
ORF R11c is unusual in that there are two clear family relationships within the same predicted
protein, one belonging to the EGF family described here, and the other belonging to the ATP-
dependent transporters, detected previously  [6]. Since the EGF homology is within the first 200
aa, while the ATP-dependent homology is within the last 700 aa of a 1049 aa protein, it is possible
that a fusion has occurred. However, whether this apparent fusion resulted from a real evolutionary
event or a sequencing error remains to be determined.
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Table 3. Highest scoring block hits in S. cerevisiae chromosome III

Hit # Family Percentile ORF Frame #Blocks E Comment Zone
A. Versus BLOCKS v. 4.1 (Feb. 1992)
1 Phosphoglycerate kinases 100 L12w  2 8/8 6x10-36 known <1/7000
2 Citrate synthases 100 R5c -1 6/6 4x10-24 known <1/7000
3 Hexokinases 100 R40w  2 5/5 3x10-21 known <1/7000
4 Isocitrate dehydrogenases 100 L18w  2 5/5 5x10-20 known <1/7000
5 Ribosomal protein S11 100 R31c -2 2/2 3x10-6 known <1/7000
6 Protein kinases 100 L24w  3 2/2 2x10-4 reported <1/7000
7 Protein kinases 100 L8w  3 2/2 reported <1/7000
8 Thioredoxins 100 L43c -1 2/2† 2x10-4 reported <1/7000
9 Protein kinases 100 R73c -2 2/2 1x10-4 reported <1/7000
10 ATP-binding transporters 100 R11c -2 2/2 3x10-4 reported <1/7000
11 Thioredoxins 100 R83w  1 2/2 3x10-5 reported <1/7000
12 Protein kinases 100 R91w  1 2/2 reported <1/7000
13 Amino acid permeases 100 L25c -1 2/2 9x10-6 reported <1/7000
14 Glutaredoxins 100 R36w -2 2/2 6x10-6 reported <1/7000
15 Homeobox 100 R97w  3 1/1 known <1/7000
16 Ser/Thr dehydratases 100 L64c -1 2/2 4x10-5 reported <1/7000
17 Serine proteases 100 R45c -2 4/4 1x10-15 reported <1/7000
18 Homeobox 100 R96c -1 1/1 known <1/7000
19 Homeobox 100 L67c -2 1/1 known <1/7000
20 Homeobox 100 R39c -3 1/1 known <1/7000
21 Endoplasmic ret. target 100 L43c -1 3/3 6x10-7 known <1/7000
22 Pept.-prolyl isomerases 99.97 R69w  3 2/2 9x10-7 new <1/7000
23 RNA-binding proteins 99.97 L11c -2 2/2† 9x10-5 reported <1/7000
24 Zinc-containing ADHs 99.77 R105w  1 3/4 2x10-8 reported <1/7000
25 Engrailed-type homeobox 99.74  2 1/7 spurious >1/100
26 DNA polymerase X proteins 99.74 R14c -1 3/5 9x10-7 new <1/7000
27 Class I metallothionines 99.70 -2 1/1 spurious >1/100
28 Receptor tyrosine kinases 99.70 R73c -2 1/5 reported >1/100
29 pfkB carbohydrate kinases 99.57 R36w  1 2/4 1x10-5 new <1/7000
30 Fungal Zn-Cys cluster 99.39 R106w  2 1/2 new >1/100
33 Sugar transport proteins 99.19 R98c -1 2/4 7x10-4 new <1/7000
34 C2 domain 99.18 R91w  1 2/4 6x10-5 reported <1/7000
37 Phorbol ester binding 98.80 R91w  1 2/3 8x10-5 reported <1/7000
42 Zinc-containing ADHs 98.30 R102c -3 2/4 7x10-4 new* <1/7000
49 Receptor tyrosine kinases 97.49 L24w  3 2/5 5x10-4 reported <1/7000
61 Euk. RNA polymerase II 96.40 3,1 2/1 7x10-3 spurious >1/1000
115 Phorbol ester binding 90.60 R73c -2 2/3 4x10-4 reported <1/7000
B. Additional top hits versus BLOCKS v. 6.0 (Feb. 1993)

Fork head domain 100 R65w  2 3/3 1x10-11 reported <1/7000
Histidinol dehydrogenase 100 L30c -3 8/8 1x10-35 known <1/7000
DNA mismatch repair 100 R92c -3 2/2 3x10-5 reported <1/7000
Stress-induced proteins 100 R104w -1 4/4 6x10-13 new <1/7000
G protein 100 R38c -3 2/2 2x10-3 reported <1/7000
Beta transducin 100 R57c -3 2/2† 3x10-5 reported <1/7000
C3-C4 Zinc finger 100 R66w  2 1/1† known <1/7000
Beta transducin 99.95 L39w  1 2/2 1x10-4 new* <1/7000
Integrins beta chain 99.94 -2 2/8 4x10-4 telomere# <1/7000
Neutral metallopeptidase 99.65 L57w  2 1/1 known >1/100
EGF-like 99.10 R11c -2 1/2† new* >1/100
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4: Discussion

In previous work, we described an automated approach to protein family classification that involves using a
protein query to search a database of protein blocks for both local and global similarities [18]. The database includes
families that are usually represented by more than one block; therefore detection of multiple blocks can be used to
compute a global "expectant value". This value can be combined with an independent local "anchor score" to arrive at
an overall level of confidence. Here, we have applied this method to analyze a very large dataset encoding numerous
proteins, choosing the largest sequence available, yeast chromosome III. While we recognize that typical genomic
sequences from higher eukaryotes will be more challenging because coding regions are separated by introns, we think
that our general approach is applicable to that situation. In particular, the short conserved regions represented by blocks
should be appropriate for detection of homology within exons, and the examination of all 3 frames on a strand should
allow for multiple block alignments within different exons. In such applications, it might be worthwhile to use a more
flexible function for the allowable distance between blocks so that gaps caused by introns can be bridged.

An advantage to our automated approach is the ready detection of repeats by examination of BLOCKSORT
output (see Fig. 3b). Two of the three new homologies detected here but not in previous studies were of this type. This
suggests that manual methods in general use are relatively insensitive to repeats.

The Blocks Searcher is extremely sensitive to distant relationships. For yeast chromosome III, the search of
BLOCKS v. 4.1 involved more than 109 block alignments, necessitating a high threshhold for detection. Nevertheless,
this single search detected a relationship to an ORF (R102c) that was missed by two groups examining the results of
searches using 182 queries. This example also illustrates that it is not necessary to identify ORFs in order to do an
adequate search. As a result, a hit involving multiple blocks in different reading frames can be detected and statistically
evaluated, which is an important feature for family classification involving raw and erroneous DNA sequence [2].

The Blocks Searcher is also selective when applied to large DNA sequences. This is illustrated by the
observation that there was only a single spurious hit involving multiple blocks among the top 316 hits reported using
yeast chromosome III as query. In one sense, this low background resulted from the high threshhold necessitated by
the sheer size of the search. While it is possible that true positives were missed because of the high threshhold, it is
comforting that we were able to detect the same fraction of homologs detected by others (40%) as the fraction of
SWISS-PROT sequences present in the PROSITE catalog from which the Blocks Database was derived. When the
same search was carried out a year later with a larger Blocks Database, there was a corresponding increase in the
number of homologs detected. As the Blocks Database expands slowly in the number of groups, our approach becomes
more powerful; in contrast, the sequence databases expand much more rapidly, and detection of homology becomes
more difficult due to increased background.

5: Conclusion

Our approach to the analysis of large-scale sequence data provides an automated method for the detection and
evaluation of family relationships. In contrast to manual approaches in which individual open reading frames are first
identified, then searched and evaluated individually, we carry out a single search of the entire sequence. Yeast
chromosome III provided an excellent test of our approach, because it has been the subject of intensive analysis by
groups of sequence analysis experts [6], [7], [8]. Our ability to detect clear relationships not reported in any of those
studies argues that an automated approach can be very powerful. No special expertise is necessary to use this system;
about 1500 people have used it as an electronic mail server.
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